The U.S. government has unveiled new security guidelines aimed at bolstering critical infrastructure against artificial intelligence (AI)-related threats.
“These guidelines are informed by the whole-of-government effort to assess AI risks across all sixteen critical infrastructure sectors, and address threats both to and from, and involving AI systems,” the Department of Homeland Security (DHS) said.
In addition, the agency said it’s working to facilitate safe, responsible, and trustworthy use of the technology in a manner that does not infringe on individuals’ privacy, civil rights, and civil liberties.
The new guidance concerns the use of AI to augment and scale attacks on critical infrastructure, adversarial manipulation of AI systems, and shortcomings in such tools that could result in unintended consequences, necessitating the need for transparency and secure by design practices to evaluate and mitigate AI risks.
Specifically, this spans four different functions such as govern, map, measure, and manage all through the AI lifecycle –
- Establish an organizational culture of AI risk management
- Understand your individual AI use context and risk profile
- Develop systems to assess, analyze, and track AI risks
- Prioritize and act upon AI risks to safety and security
“Critical infrastructure owners and operators should account for their own sector-specific and context-specific use of AI when assessing AI risks and selecting appropriate mitigations,” the agency said.
“Critical infrastructure owners and operators should understand where these dependencies on AI vendors exist and work to share and delineate mitigation responsibilities accordingly.”
The development arrives weeks after the Five Eyes (FVEY) intelligence alliance comprising Australia, Canada, New Zealand, the U.K., and the U.S. released a cybersecurity information sheet noting the careful setup and configuration required for deploying AI systems.
“The rapid adoption, deployment, and use of AI capabilities can make them highly valuable targets for malicious cyber actors,” the governments said.
“Actors, who have historically used data theft of sensitive information and intellectual property to advance their interests, may seek to co-opt deployed AI systems and apply them to malicious ends.”
The recommended best practices include taking steps to secure the deployment environment, review the source of AI models and supply chain security, ensure a robust deployment environment architecture, harden deployment environment configurations, validate the AI system to ensure its integrity, protect model weights, enforce strict access controls, conduct external audits, and implement robust logging.
The briefing by the NSA can be found here – https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/3741371/nsa-publishes-guidance-for-strengthening-ai-system-security/
The full report can be found here – https://media.defense.gov/2024/Apr/15/2003439257/-1/-1/0/CSI-DEPLOYING-AI-SYSTEMS-SECURELY.PDF
Hello All. Like many people, I make use of Apple AirTags for a number of applications in my day-to-day life. Isn’t it great when the airline says, “We don’t know known where your luggage is.” and you say, “It is siting on the north side of Chicago O’Hare Airport.” Just recently, with the rash of car thefts in the Toronto area, many have been tracking their stolen vehicles using multiple hidden AirTags. Thinking back to the start of my career in technology, I would have never though this would be a thing. If you are curious how these work, it is quite simple. AirTags use ultra-wideband technology and Apple’s existing network of devices to help you track down lost or stolen items. So as long as an Apple device is in proximity to your AirTag, it will relay the location back to Apple, and on to the person tracking it. Great use of crowdsourcing via Apple users, huh? However, in order to track an AirTag, you must be running iOS 14.5 or above on your iPhone or iPadOS 14.5+ on your tablet. However, in order to use Precision Finding, which can guide you to your device via on-screen instructions, you need an iPhone 11 or 12. These models use the camera, ARKit, accelerometer, and gyroscope for a more “directionally aware finding experience,” according to Apple. AirTags do not include a GPS chip like your iPhone. Instead, Apple has used its proprietary U1 chip with ultra-wideband technology to create a peer-to-peer network that taps into the 1.65 billion Apple devices out in the wild to nail down the location of an AirTag.